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THE RESPONSE OF SUBALPINE FORESTS TO SPRUCE
BEETLE OUTBREAK IN COLORADO!

THoMAS T. VEBLEN, KEITH S. HADLEY, MARION S. REID, AND

ALAN J. REBERTUS
Department of Geography, University of Colorado, Boulder, Colorado 80309 USA

Abstract. Spruce beetle (Dendroctonus rufipennis Kirby) outbreaks are important dis-
turbances affecting subalpine forests of Engelmann spruce (Picea engelmannii), subalpine
fir (Abies lasiocarpa), and lodgepole pine (Pinus contorta) in the southern Rocky Mountains.
However, little is known about the influences of these outbreaks on overall forest dynamics.
We used age-structure analyses and dendrochronological techniques to investigate the
effects of a major spruce beetle outbreak on stand composition, dominance, tree age and
size structures, radial growth, and succession in subalpine forests in Colorado. This out-
break, which occurred in the 1940s, caused a shift in dominance from spruce to fir and a
reduction in average and maximum tree diameters, heights, and ages. The outbreak did
not favor new seedling establishment of the seral lodgepole pine. Thus, in seral stands
spruce beetle outbreak accelerates succession towards the shade-tolerant tree species.

The predominant response to the outbreak was the release of previously suppressed
small-diameter spruce (not attacked by the beetle) and subalpine fir (a non-host species).
Following the 1940s outbreak, growth rates of released trees remained high for >40 yr.
The relative increases in growth rates were similar for both species. Both spruce and fir
will continue to codominate the affected stands. The predominance of accelerated growth
following a spruce beetle outbreak, instead of new seedling establishment, is a major contrast
to the pattern of stand development following fire. In some Colorado subalpine forests the
effects of disturbance by spruce beetle outbreaks appear to be as great as those due to fire.

Key words: Abies lasiocarpa; age structure; Colorado Rocky Mountains; Dendroctonus rufipennis;
dendroecology; disturbance; Picea engelmannii, spruce beetle outbreak; spruce—fir forest; subalpine

forests; succession.

INTRODUCTION

Episodic outbreaks of insects lethal to particular tree
species are common in many temperate forests (Morris
1963, Furniss and Carolin 1977, Schowalter 1985).
Massive tree mortality from these outbreaks releases
resources that potentially are available to survivors of
the outbreak or to individuals that subsequently be-
come established. Thus, in addition to the direct effects
of the mortality, outbreaks are likely to affect tree growth
rates and establishment patterns, which in turn may
alter stand productivity, structure, and composition
(Morris 1963, Amman 1977, Romme et al. 1986).
Changes in stand development patterns often result
from interactions among lethal insects, pathogenic fun-
gi, and fires (Knight 1987).

Fire, blowdown, and insect attack in Rocky Moun-
tain coniferous forests create mosaics of stands of vary-
ing structure and composition (Peet 1988). In the sub-
alpine forests of Colorado (i.e., above =2750 m),
characterized mainly by Engelmann spruce (Picea en-
gelmannii (Parry) Engelm.), subalpine fir (4bies lasio-
carpa (Hook.) (Nutt.), quaking aspen (Populus tremu-
loides Michx.) and lodgepole pine (Pinus contorta Dougl.
var. latifolia Engelm.), fire is believed to have been

! Manuscript received 20 October 1989; revised 14 March
1990; accepted 18 March 1990.

historically the most important form of natural dis-
turbance (Clements 1910, Romme and Knight 1981,
Peet 1988). Consequently, there have been numerous
investigations of stand development patterns following
wildfire in the subalpine zone (e.g., Whipple and Dix
1979, Peet 1981, Romme and Knight 1981, Romme
1982, Veblen 1986a). These studies document the
gradual replacement of the seral pines and aspen by fir
and spruce, although the patterns vary markedly ac-
cording to habitat and seed availability.

Widespread disturbance by spruce beetle (Dendroc-
tonus rufipennis Kirby) outbreaks is well documented
for the southern Rockies (Schmid and Frye 1977,
Schmid and Hinds 1984) where spruce beetle out-
breaks may be as ecologically significant as fire (Baker
and Veblen 1990). However, we know surprisingly lit-
tle about the influence of these outbreaks on overall
forest dynamics. To address this gap in our knowledge
we designed a study of the effects of spruce beetle out-
breaks on stand composition and dominance, age and
size structure, tree growth, and succession. We exam-
ined stand responses, over a range of site conditions
and pre-attack stand structures, to the severe spruce
bectle outbreak that affected most of the subalpine for-
ests of central-western and northwestern Colorado in
the 1940s (Hinds et al. 1965).

Outbreaks of spruce beetle, the most damaging insect
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Fic. 1. 1986 view of the Ripple Creek Pass area (near stand W3) of White River National Forest, Colorado, where nearly
all the dominant Engelmann spruce were killed during the 1940s spruce beetle outbreak.

of the subalpine zone, are triggered by blowdowns or
the accumulation of logging debris (Schmid and Frye
1977). Endemic spruce beetle populations infest fallen
trees and scattered live trees, but during outbreaks can
kill most canopy spruce over extensive areas (Schmid
and Frye 1977). Beetles partially consume the phloem
and transmit several fungi that cause occlusion of the
outer xylem. It appears that spruce beetles preferen-
tially attack slow-growing, large-diameter trees that are
relatively free of lower branches. Spruce <10 cm in
diameter are not usually attacked. In unusually severe
outbreaks, the beetle attacks and kills lodgepole pine
as well as spruce (Schmid and Frye 1977).

In 1939 a strong windstorm blew down extensive
patches of subalpine forest in western Colorado, thus
promoting the growth of endemic spruce beetle pop-
ulations into the largest recorded epidemic of this cen-
tury. By 1952, when the epidemic subsided, 10.1 X
106 m? (4.3 x 10° board feet) of timber had been killed
(Massey and Wygant 1954). Three-quarters of this
mortality was in White River National Forest, where
an estimated 290,000 ha were devastated, and the re-
mainder in Grand Mesa, Routt, and Arapaho National
Forests (Hinds et al. 1965, Cahill 1977). Most beetle-
killed spruce remain standing for many years so that
the severity of the outbreak was still evident at the time
of our sampling >40 yr later (Fig. 1).

In this paper we examine stand responses for six
stands in the areas affected by the 1940s spruce beetle
outbreak. In relation to canopy disturbance by a spruce
beetle outbreak, we sought answers to the following
questions: How are stand age and size structures al-
tered? Does the outbreak retard the replacement of
lodgepole pine by spruce and fir by permitting new

seedling establishment? Or, does it accelerate succes-
sional replacement by the more shade-tolerant species?
Is the response to the disturbance largely new seedling
establishment or accelerated growth (i.e., releases) of
already-established trees? Is the disturbance more fa-
vorable to recruitment of fir or spruce into the main
canopy?

Stupy SITES

For sampling, we selected eight stands in subalpine
forests located on both the western and eastern slopes
of the northern Colorado Rocky Mountains (Fig. 2).
Stands were chosen to represent the complete distur-
bance gradient—from severe, to moderate, to little-or-
no disturbance —by the 1940s outbreak, and to include
pure spruce and fir old-growth stands as well as late
seral stands with lodgepole pine present. Six of the
stands are in areas reported to have been affected by
the 1940s outbreak in Forest Service reports (Hinds et
al. 1965, Cahill 1977). Each stand sampled was ho-
mogeneous in terms of the degree of attack, as inferred
from the number of dead-standing and fallen trees, but
among sampled stands the apparent degree of attack
ranged from severe to slight. For comparison with the
beetle-attacked stands, we also sampled two stands in
an area of no apparent or known history of spruce
beetle outbreaks. Although these two stands were la-
belled controls and were essential for comparing tree
growth patterns in stands not affected by an epidemic,
the heterogeneity of forest structure within the subal-
pine forests was too great for them to serve as exper-
imental controls. Consequently, published tree age and
size data from numerous other stands (Whipple and
Dix 1979, Peet 1981, Veblen 19864, b, Aplet et al.
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Fic. 2. Map of northwestern Colorado showing the locations of stands sampled. Abbreviations are: C1, Cameron Pass;
C2, Blue Lake; R1, Walton Creek; W1, Trappers Lake; W2, Lily Pond; W3, Ripple Creek Pass; G1, Cottonwood Lake; G2,

Big Creck Reservoir.

1988) were also used in comparing stand structures of
affected and unaffected stands. Three stands are in White
River, two in Grand Mesa, one in Routt, and two in
Roosevelt National Forests. No spruce beetle out-
breaks have been reported for the two areas sampled
in Roosevelt National Forest, which are the two areas
we used as controls. During the 1940s outbreak, at least
50% of the merchantable volume of spruce in Grand
Mesa National Forest, and >90% in White River Na-
tional Forest, were killed (Schmid and Hinds 1974;
Fig. 1). Near our sampling site in Routt National For-
est, 43% of the spruce >20 cm diameter at breast height
(dbh) were killed (Hinds et al. 1965). Major outbreaks
during the latter half of the 19th century are also re-
ported for the White River and Grand Mesa National
Forests (Schmid and Hinds 1974).

The two control stands in Roosevelt National Forest,
Cameron Pass (C1) and Blue Lake (C2), are in the Front
Range on soils derived from glacial till. The three White
River sites, Trappers Lake (W1), Lily Pond (W2), and
Ripple Creek Pass (W3), and the two Grand Mesa sites,
Cottonwood Lake (G1) and Big Creek Reservoir (G2),
are located on =3000 m high basaltic plateaus. The
Routt stand, Walton Creek (R1), is in the Park Range
where soils are derived from gneiss and schist (Chronic
and Chronic 1972). Soils at all sites are shallow and
coarse-textured, and are classified as Cryoboralfs, Cry-
ocrepts, and Cryorthents (Johnson and Cline 1965).

The stands are on various aspects at elevations from
~2970 to 3300 m (Table 1), but elevation, degree of
mortality, and stand structure were relatively uniform
within each stand over an area >4 ha. Precipitation in
the subalpine zone falls primarily as snow and sec-
ondarily in summer convective storms. Mean annual

precipitation in the Colorado subalpine zone varies
from 600 to 1000 mm (National Oceanic and Atmo-
spheric Administration 1971). The higher elevation
sites have somewhat cooler and more mesic climates.
All sites are characterized by short summers, typically
with <60 frost-free days (Barry 1972). Understory
composition and topographic position allow the rank-
ing of the sites according to soil moisture availability
as follows (from wettest to driest): C2, G2, W2, R,
G1, W3, W1, and Cl.

All sites were dominated by Engelmann spruce and
subalpine fir (Table 2). The two driest stands (C1 and
W 1) also included numerous lodgepole pine. Abundant
charcoal occurred at control site Cl, which had the
typical age and size structure of a late seral (i.e., =200
yr old) post-fire stand on a xeric site. The pioneer lodge-
pole pine persisted on such sites, but it is gradually
being replaced by spruce and fir (Whipple and Dix
1979, Veblen 1986a). Control site C2, where no char-
coal could be found, had the typical size and age struc-
ture of an old-growth mesic spruce—fir stand. Spruce
dominated in basal area, and both species were rep-
resented by trees of all ages (Whipple and Dix 1979,
Veblen 19864, Aplet et al. 1988).

METHODS
Field methods

Each of the eight stands was sampled in 1987 with
10 plots systematically located at 20-m intervals along
a 300 m long transect running upslope. This plot place-
ment assured that the samples were not too localized.
Plot size varied from 10 x 10 to 10 x 30 m according
to the density of live trees, so that each plot contained
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Elevation Slope Severity of the
Stand (m) Aspect (degrees) 1940 outbreak
Roosevelt National Forest (controls)
Cameron Pass (C1) 3040 South 0-14 None
Blue Lake (C2) 3020 South 0-2 None
White River National Forest
Trappers Lake (W1) 3000 North 11-27 High
Lily Pond (W2) 2970 Variable 0-14 High
Ripple Creek (W3) 3150 Northwest 0-5 High
Routt National Forest
Walton Creek (R1) 3050 Northeast 2-10 Low
Grand Mesa National Forest
Cottonwood Lake (G1) 3300 Northwest 0-17 None*
Big Creek (G2) 3080 Northeast 2-17 Moderate

* Although a spruce beetle epidemic was reported for this
significantly affected.

~20 live trees. All saplings (<4 cm dbh but =1.4 m
tall) were counted by species. All fallen trees > 15cm
dbh that intercepted the transect tape bisecting each
plot were identified by species and their dbh’s were
measured. Species and dbh were recorded for all trees
>4 cm dbh, both live and dead standing. Because most
Engelmann spruce killed by spruce beetle remain dead
standing for many decades (Hinds et al. 1965), the
density and basal area of dead-standing trees are good
indicators of the amount of beetle-caused mortality.
The spruce killed in the White River outbreak have
been falling at the rate of 1.5% per year (Schmid and
Hinds 1974). Eighty-five percent of the dead spruce
from an earlier outbreak in Utah were still standing 25
yr after the outbreak (Mielke 1950).

Tree seedling (<1.4 m tall) densities were sampled
with ten 1 x 1 m quadrats randomly located in each
plot. Half of the quadrats were randomly located to
each side of the transect tape in each plot. Seedlings
were counted in height classes of <20 cm and 20-140
cm.

In each plot, increment core samples for tree aging
were extracted at a height of =30 cm above the ground
from all live trees >4 cm dbh. Approximately ten short
seedlings (=10 cm tall), tall seedlings (=80 cm tall),
and saplings of each species were cut at the base for
aging. In addition to the cores taken from all trees in
the 10 plots in each stand, supplemental cores were
taken from the largest, and presumably oldest, live
trees in each stand to develop long ring-width chro-
nologies. Two cores were extracted at a height of 1.1
m from =10 of the largest trees of each species in each
stand. These ring-width chronologies allowed exami-
nation of past changes in radial growth patterns.

Dendroecological analyses

All cores were mounted and sanded with succes-
sively finer grades of sand paper following the proce-

general area (Schmid and Hinds 1974), this stand was not

dures of Stokes and Smiley (1968), and annual rings
were counted under stereomicroscopes. Because of rot-
ten centers, small numbers of sampled trees in each
stand could not be aged (see Fig. 4 for percentages aged
in each stand), but their dbh’s are included in the dbh
frequency distributions (Fig. 3). Due to the variable
periods required for trees to reach coring height, tree
ages are given as age at coring height. Years were re-
corded in which growth releases were initiated. A growth’
release was defined as a 250% increase in mean ring
width when means of consecutive groups of five years
were compared. Trees that experienced rapid initial
growth, presumably reflecting establishment under rel-
atively open conditions following disturbance, were
also counted as “releases.” Cores from such trees were
identified by their consistently wide rings over the ini-
tial 10-20 yr of growth. Release data are summarized
as the percentage of those trees surviving to 1987 that
showed a release in a given year.

Mean ring-width chronologies were developed sep-
arately from =20 randomly selected trees of each spe-
cies in each stand, and from ~20 cores from the sub-
jectively selected older trees. The randomly selected
trees included many small subcanopy trees, which were
more likely to respond to the 1940s outbreak, whereas
the subjectively selected older trees, most of which
were canopy trees, permitted examination of the long-
term history of each stand. For the chronologies of the
randomly selected trees, only cores >60 yr old were
used, thus assuring a constant sample size for at least
the 1927-1986 period. All the cores from the older
trees were visually cross-dated using the techniques of
Stokes and Smiley (1968). Ring widths were measured
to the nearest 0.01 mm with a Henson computer-com-
patible incremental measuring machine. The computer
program COFECHA (Holmes 1983) was used to detect
measurement and cross-dating errors, and cores con-
taining such errors were corrected or removed from
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the data set. COFECHA tests for errors by computing
correlation coefficients between individual series and
the master chronology for each species.

Ring-width chronologies were standardized with the
programs INDEX and SUMAC to reduce ring-width
variances among and within cores (Fritts 1976, Gray-
bill 1979). Standardization involves fitting the ob-
served ring-width series to a curve or a straight line
and computing an index of the observed ring widths
divided by the expected value. This reduces variances
among cores, and transforms ring widths into dimen-
sionless index values. Thus, standardization permits
computation of average tree-ring chronologies without
the average being dominated solely by the faster grow-
ing trees with large ring widths. Following extensive
experimentation with the common alternatives used
in standardization (horizontal or inclined straight lines,
cubic spline functions, and exponential or polynomial
curves), the horizontal straight line passing through the
mean ring width was selected as the most useful stan-
dardization procedure (Veblen et al., in press). Thus,
the ring-width index is the actual ring width in a core,
for a particular year divided by the mean ring width
of the entire core. The horizontal straight-line fit does
not detrend the series. It facilitates the detection of
deviations from the average growth rate, and is par-
ticularly useful in identifying long periods of release
such as those expected to be associated with a major
canopy disturbance.

REsuULTS
Disturbance severity

Tree mortality patterns indicate that the greatest se-
verity of the 1940s spruce beetle outbreak occurred in
the three White River stands. All three stands con-
tained more dead-standing basal area than live basal
area of spruce (Table 2). Virtually all dead-standing
spruce as well as fallen trees were engraved with beetle
galleries. In subalpine forests not affected by recent
spruce beetle outbreaks, fallen fir trees are usually more
abundant than fallen spruce trees (Veblen 19865). Thus
the greater numbers of intercepted spruce logs in all
three White River stands further indicates the high
severity of the 1940s outbreak (Table 3). In all stands
except the White River stands, fallen fir trees were
more abundant than fallen spruce trees. Although a
few fallen trees at each site could not be identified
(Table 3), they were not sufficiently abundant to alter
the described patterns.

At control site C1, dead-standing trees and logs of
spruce were rare, which is consistent with the lack of
any recent spruce beetle outbreaks (Tables 2 and 3).
At control site C2, the high basal area of dead-standing
spruce results from a few large dbh dead trees (Table
2; Fig. 3). These large dead trees were engraved with
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TaBLE 2. Tree composition of the stands sampled.
Basal area Density
(m?/ha) (no./ha)
Dead Dead
Stand stand- stand-

Species Live ing Live ing
Cameron Pass (C1)

Pinus contorta 18.1 2.1 175 31

Abies lasiocarpa 13.1 5.4 888 187

Picea engelmannii 24.7 0.3 600 19
Blue Lake (C2)

Abies lasiocarpa 11.2 8.2 943 129

Picea engelmannii 30.9 8.8 1079 85
Trappers Lake (W1)

Pinus contorta 3.9 141 59 208

Abies lasiocarpa 13.5 2.0 1105 87

Picea engelmannii 2.5 8.2 418 132
Lily Pond (W2)

Abies lasiocarpa 20.5 3.9 1155 85

Picea engelmannii 11.6 153 485 80
Ripple Creek Pass (W3)

Abies lasiocarpa 30.3 5.7 1650 100

Picea engelmannii 6.4 8.9 515 80
Walton Creek (R1)

Abies lasiocarpa 35.9 3.8 952 171

Picea engelmannii 10.3 9.2 348 71
Cottonwood Lake (G1)

Abies lasiocarpa 22.3 8.5 1015 305

Picea engelmannii 35.0 0.5 695 60
Big Creek Reservoir (G2)

Abies lasiocarpa 249 11.3 727 195

Picea engelmannii 21.8 2.1 441 32

beetle galleries and may have been killed by the en-
demic spruce beetle population, but there was no ev-
idence of an epidemic.

At Walton Creek (R1) the live and dead-standing
basal areas of spruce were about the same, suggesting
an outbreak of low-to-moderate intensity (Table 2).
Fallen spruce trees in stand R1 were scarce but large
(Table 3). In stand G1 on Grand Mesa, where the 1940s
outbreak was reported to be less severe than in White
River National Forest (Schmid and Hinds 1974), basal
area of dead-standing spruce was low and intercepted
fallen spruce trees were scarce. These data imply that
stand G1 was not significantly affected by the 1940s
outbreak. For stand G2, also on Grand Mesa, dead-
standing basal area of spruce was low, but the abun-
dance of large fallen spruce trees is consistent with a
recent, but moderate, outbreak (Tables 2 and 3).

Effects on stand structure

Seedlings and saplings. —Spruce and fir seedlings can
be very slow growing, and consequently not all seed-
lings would have established since the spruce beetle
outbreaks of the 1940s. However, the age ranges of
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TABLE 3. Numbers and median diameter at breast height (dbh) of fallen trees =15 cm dbh intercepted by transects in each

stand sampled.

Pinus contorta Picea engelmannii  Abies lasiocarpa Unidentified
No. dbh No. dbh No. dbh No. dbh
Stand

Cameron Pass (C1) 2 18 0 0 3 16 0 0
Blue Lake (C2) 0 0 8 39 14 23 0 0
Trappers Lake (W1) 25 25 19 26 6 19 7 31
Lily Pond (W2) 0 0 24 33 5 23 2 23
Ripple Creek Pass (W3) 0 0 20 26 10 21 6 20
Walton Creek (R1) 0 0 3 45 5 37 2 26
Cottonwood Lake (G1) 0 0 1 26 8 24 3 28
Big Creek Reservoir (G2) 0 0 8 40 27 37 3 34

seedlings indicated that nearly all short seedlings (<20
cm tall) in all stands had established since the 1940s
outbreak (Table 4). In contrast, many tall seedlings
(20-140 cm high) and saplings pre-dated the 1940s
outbreak.

Although canopy disturbance by beetles might be
predicted to favor tree seedling establishment, the data
on abundances and ages of seedlings and saplings do
not clearly demonstrate an increase in establishment
rate. Seedlings were not consistently more abundant in
the affected stands (Table 4). Fir seedlings, for example,
were most abundant in severely disturbed stand W1,
but in the other severely disturbed stands (W2 and W3)
they were less abundant than in control stand C2 and
the moderately disturbed stand R1. There was, how-
ever, a tendency for the ages of saplings to be younger
in most of the more severely disturbed stands (e.g.,
stands W1, W2, and G2). This could indicate either
new establishment of seedlings following the beetle
outbreak or growth of the older saplings into the tree
size class following the beetle outbreak. In general,
however, if canopy disturbance favored seedling es-
tablishment of fir and spruce, it was not obvious =40
yr later. The absence of seedlings and saplings of lodge-
pole pine in stand W1 indicates that, despite the severe
canopy disturbance, there was little or no new estab-
lishment of this shade-intolerant species.

Tree age and size structure.—In control stand Cl
lodgepole pine occurred as a non-regenerating popu-
lation ranging from 111 to 191 yr old (Fig. 4). In this
first-generation post-fire stand, fir and spruce trees were
relatively scarce in age classes younger than 100 yr.
Dead-standing fir and spruce were mostly small trees,
indicating that the mortality was the result of thinning
of suppressed trees rather than canopy tree mortality
(Fig. 3).

In control stand C2 fir and spruce had all-aged tree
age distributions (Fig. 4 and Table 4). Although both
species attained ages >300 yr, spruce dominated the
age classes >200 yr and the dbh classes >30 cm (Figs.
3 and 4), as is typical for old-growth spruce-fir forests
(Veblen 1986b). In contrast to stand C1, some of the

dead spruce were large trees, which may have died from
senescence and (/or) endemic beetle attack.

In stand W1 lodgepole pine occurred as a small pop-
ulation ranging in age from 216 to 261 yr (Fig. 4). This
tree age distribution and the lack of saplings and short
seedlings indicate that lodgepole pine seedlings have
not become established since the 1940s outbreak. The
large sizes of the beetle-killed lodgepole pine imply that
prior to the outbreak it was similarly not regenerating
(Fig. 3). In contrast, subalpine fir was abundant in tree
age classes <160 yr (Fig. 4). Both fir and spruce had
all-aged tree distributions prior to the outbreak. Max-
imum tree ages for fir and spruce in stand W1 were
251 and 220 yr, respectively. These age data, the abun-
dance of charcoal at the soil surface, and the presence
of the remnant lodgepole pine population indicate that
stand W1 was a first-generation post-fire stand prior
to the beetle outbreak. In subalpine forests, initial post-
fire colonization by spruce tends to be more abundant
than fir, which results in more abundant spruce than
fir in the older age classes and larger size classes (Whip-
ple and Dix 1979, Peet 1981, Veblen 1986a). However,
in stand W1 beetles had killed most of the spruce > 100
yr old and >20 cm dbh (Table 3 and Fig. 3), so that
the typical relationship of fir—spruce abundances was
reversed.

In stands W2 and W3 at White River and stand R1
in Routt National Forest, spruce and fir also had all-
aged tree populations including young seedlings (Fig.
4 and Table 4). Again, the greater abundance of fir in
age classes > 140 yr and size classes >30 cm dbh, com-
pared to spruce, appears to be a result of beetle-caused
mortality of the older spruce (Fig. 3 and 4). This is also
reflected by the abundance of dead-standing spruce
>20 cm dbh (Fig. 3).

In stand G1 on Grand Mesa, which was not severely
disturbed by the 1940s outbreak, tree age distributions
for both spruce and fir were broadly bell-shaped (Fig.
4), and seedlings and saplings were relatively scarce
(Table 4). The proportions of large and old fir and
spruce are typical of stands not significantly disturbed
by spruce beetles. Here, spruce was the more abundant
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TABLE 4. Tree seedling and sapling densities and median ages. Age was determined at ground level for 8 to 15 samples. Age

ranges are given in parentheses below each median.

Short seedlings

Tall seedlings Saplings >140 cm

<20 cm tall 20-140 cm tall tall but <4 cm dbh
Age Density Age Density Age Density
(yr) (no./ha) (yr) (no./ha) (yr) (no./ha)
Cameron Pass (C1)
Abies lasiocarpa i9 800 113 2700 120 1175
(5~-23) (59-135) (97-141)
Picea engelmannii 13 100 109 300 140 144
(8-21) (76-134) (119-146)
Blue Lake Trail (C2)
Abies lasiocarpa 12 2500 79 5400 125 1179
(7-21) (49-123) (83-143)
Picea engelmannii 12 2500 59 1800 96 443
(8-23) (35-108) (62-191)
Trappers Lake (W1)
Abies lasiocarpa i1 14600 28 6700 50 936
(7-19) (19--35) (29-128)
Picea engelmannii 16 600 37 2800 37 505
(8-28) (15-45) (27-125)
Lily Pond (W2)
Abies lasiocarpa N.D.¥ 1800 52 700 35 525
(22-81) (28-72)
Picea engelmannii 8 1300 20 600 33 225
(5-21) (11-43) (22-67)
Ripple Creek Pass (W3)
Abies lasiocarpa 21 1300 82 5100 76 1270
(10-38) (46-95) (46-103)
Picea engelmannii 25 600 52 3100 92 470
(14-41) (31-123) (69~122)
Walton Creek (R1)
Abies lasiocarpa 22 7100 68 5000 88 895
(11-26) (27-89) (61-120)
Picea engelmannii 24 3400 50 1100 78 205
(14-31) (27-66) (60-86)
Cottonwood Lake (G1)
Abies lasiocarpa 19 900 90 2100 107 330
(12-25) (63-107) (68-134)
Picea engelmannii 22 200 61 0 104 65
(9-31) (50-85) (42-147)
Big Creek Reservoir (G2)
Abies lasiocarpa 11 1400 51 1600 90 505
(5-23) (29-101) (31-118)
Picea engelmannii 16 200 41 500 90 109
(7-28) (36-53) (36-119)

* No data.

tree in the older age classes and larger dbh classes (Figs.
3 and 4). In contrast, in the beetle-disturbed stand G2,
fir was the more common species in dbh classes >20
cm and age classes >160 yr old (Figs. 3 and 4).

Tree growth responses

In the three White River stands and in stand G2 on
Grand Mesa there were dramatic increases in the per-
centages of trees released in the 1940s and 1950s in
association with the beetle outbreak (Fig. 5). Subalpine
fir, because of its abundance, is the best indicator of
canopy disturbance. In stands W3 and G2 the increase
in frequencies of released trees in 1939 and 1940 may

be in response to the 1939 windstorm (see ntroduction,
above), while the increases beginning in the mid- to-
late 1940s in all four stands correspond to the beetle
outbreak. In comparison, neither of the control stands
C1 or C2 shows a major increase in frequencies of
released trees (Fig. 5), which implies neither stand has
suffered a severe canopy disturbance during this =100-
yr record of releases. There were much higher fre-
quencies of trees released in stand C2 than in stand
C1, as expected for an older stand in which the rate of
treefall of large gap-producing individuals was higher
(Fig. 5).

In stand G1 on Grand Mesa releases were not nec-
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Fic. 4. Frequency distributions of trees =4 cm dbh in 20-yr age classes for each tree species occurring in each of the eight
stands. Stand abbreviations as in Fig. 2. The percentage or trees in each sample that were successfully aged are: for Engelmann
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85% in W1 and 96% in C1.

essarily more abundant during the 1940s than at other
times during the past 100 yr, such as the 1880s or 1960s
(Fig. 5). This is consistent with the lack of other evi-
dence of disturbance by beetle outbreak despite the
stand’s location in a general area of moderate outbreak
(Schmid and Hinds 1974). Stand R1, despite its lo-
cation in an area of reported outbreak in the 1940s,
showed only slight increases in frequencies of released

trees beginning in the late 1940s. Here, the intensity
of the 1940s outbreak was low, as judged from the
scarcity of dead spruce, and would not have been de-
tected from patterns of tree release alone.

In the chronologies derived from the randomly se-
lected cores in the severely disturbed stands (W1, W2,
and W3 in White River and in the moderately dis-
turbed stand G2 on Grand Mesa), there were abrupt
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and sustained two- to five-fold increases in mean ring
widths corresponding to the 1940s beetle outbreak (Fig.
6). Lodgepole pine in stand W1 showed the weakest
response, as expected for trees that were predominantly
canopy individuals at the time of the outbreak (Fig. 3).
The more dramatic responses of fir and spruce reflect
the position of many of these individuals in the sub-
canopy, where they would benefit more from the re-
lease of resources associated with the death of canopy
trees. The increased growth rates which began in the
1940s persisted to 1986, the last year measured. In
contrast, control stands C1 and C2 did not show major
sustained increases in mean growth rates in the 1940s
or 1950s (Fig. 6). Over the period from 1880 to 1986
fir in both control stands and spruce in control stand
C2 showed increasing growth rates, reflecting the growth
of previously suppressed subcanopy trees into the main
canopy as old canopy trees died. Short periods (e.g.,
5-10 yr) of accelerating growth rates of fir in stand C1

in the 1960s, and of both species in stand C2 in the
1950s and 1960s, may reflect small-scale wind distur-
bance. However, the magnitudes and durations of these
accelerations are much less than those associated with
beetle outbreak in stands W1, W2, W3, and G2.

The randomly selected trees in stand R1 showed
increasing growth rates since the early 1940s, but not
the dramatic increases seen in stands W1, W2, W3,
and G2 (Fig. 6). This is consistent with an outbreak of
low severity as judged from the number of dead-stand-
ing spruce (Table 2). However, the growth patterns of
the randomly selected trees are not sufficient for certain
identification of the 1940s outbreak in stand R1, as
indicated by comparison with control stand C2 (Fig.
6). On Grand Mesa stand G1 lacked any increase cor-
responding to the 1940s outbreak, which is consistent
with the scarcity of dead spruce in that stand (Tables
2 and 3).

The long chronologies developed from the subjec-
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tively selected older trees allow examination of the
responses of mostly canopy trees to the 1940s outbreak.
In most stands the median dbh of trees used in the
long tree-ring chronologies was two or more times as
great as that of the median dbh of the randomly selected
trees of the same species, which were mostly subcanopy
trees (Figs. 6 and 7). The long chronologies further
elucidate the patterns of stand development derived
from age structures.

In control stand C1 the long chronologies for all three
species indicate rapid initial growth rates, which de-
clined dramatically as the stand developed (Fig. 7).
This is the expected pattern for tree populations that
began to establish soon after a stand-initiating fire.
None of the species showed any abrupt and sustained
acceleration in growth rate that could be associated
with a major canopy disturbance.

In contrast, in control stand C2 neither spruce nor
fir had the exponentially declining pattern of mean ring
width expected for a post-fire population (Fig. 7). Fir
had a slowly increasing average growth rate with in-
creasing stand age. Spruce had a fluctuating growth rate
that does not change markedly over the >300-yr rec-
ord. In the late 17th and early 18th centuries there was
a sustained period of above-average mean ring widths,
which may indicate an early canopy disturbance such
as a spruce beetle outbreak.

In stand W1 lodgepole pine initially grew rapidly, as
expected for a post-fire population (Fig. 7). Its growth
rate declined rapidly over the first 100 yr of stand
development to a low but fluctuating rate. Given the
large size of these trees at the time of the 1940s beetle
outbreak, it is not surprising that the disturbance in-
creased the mean growth rate only slightly. Spruce and
fir in stand W1 had low growth rates until released by
the 1940s outbreak. The length and magnitude of their
growth accelerations were less than those for the ran-
domly selected trees (Figs. 6 and 7). This is consistent
with the mainly subcanopy positions of the randomly
selected trees and the canopy stature of the older trees.

The low initial growth rates of the oldest trees in
stands R1, G1, and G2 indicate that these are not post-
fire stands (Fig. 7). In stands W2 and W3 it is likely
that the oldest spruce were killed by beetles, which
makes it difficult to determine if these stands were
initiated by fire. Nevertheless, growth patterns imply
that stand W3 is not a first-generation post-fire stand,
while stand W2 may be. In stands W2 and W3 growth
accelerations of the older trees clearly indicate the 1940s
outbreak, but were generally less than those of the ran-
domly selected trees. In stand G2 moderate growth-
rate increases reflect the 1940s outbreak. In the slightly
or unaffected stands G1 and R1, canopy tree growth
rates do not reflect the 1940s outbreak. In stands R1,
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G1, and G2 there were major sustained growth-rate
increases in the mid-19th century corresponding to a
spruce beetle outbreak (Fig. 7). Extensive dead-stand-
ing spruce killed in this epidemic were reported for
Grand Mesa and White River National Forest around
the turn of the century (Sudworth 1900, Hopkins 1909).

DiscussioN

The 1940s spruce beetle outbreak of central-western
and northwestern Colorado resulted in major changes
in the structures of the most severely disturbed stands
studied (i.e., stands W1, W2, W3, and G2). In partic-
ular, dominance in basal area shifted massively from
spruce to fir, and average and maximum tree diame-
ters, heights, and ages of stands were sharply reduced
due to the mortality of the larger and longer lived spruce.
In contrast, in the less disturbed stand R1 the effects
of the outbreak were barely detectable. However, dates
of death of the dead spruce, determined by cross-dating
dead trees (Veblen et al., in press), are consistent with
reports of the 1940s outbreak in this general area (Hinds
etal. 1965). In contrast, although stand G1 was located
in the general area affected by the 1940s outbreak
(Schmid and Hinds 1974), it was not directly affected
by the outbreak.

In White River National Forest, where the 1940s
outbreak was most severe, the beetles killed many
lodgepole pine in addition to the usual host species,
Engelmann spruce (Schmid and Hinds 1974). The out-
break, however, did not result in significant new seed-
ling establishment of the seral lodgepole pine in the
sampled stands. The mortality of the pine plus the
release of small spruce and fir resulted in a major shift
in dominance towards the shade-tolerant tree species.
A similar pattern of disturbance-mediated acceleration
of succession also occurs following blowdown of lodge-
pole pine-dominated seral stands (Peet 1981, Veblen
et al. 1989). The relative lack of bare mineral soil,
possible lack of seeds, and the presence of advance
regeneration of the shade-tolerant species are major
reasons for the scarcity of new seedling establishment
of lodgepole pine following a spruce beetle outbreak.

If the 1940s outbreak favored new establishment of
spruce and fir seedlings, it was not detectable =40 yr
later. Because spruce and fir seedling abundances are
greatly influenced by variability in site factors (Knapp
and Smith 1982, Alexander and Shepperd 1984), doc-
umentation of changes in establishment rates is not
feasible without data on pre-disturbance seedling
abundances.

The most striking response to the outbreak was the
release of previously suppressed individuals of both fir
and spruce. Following the 1940s outbreak, growth rates
for both species have remained high in the severely
affected stands for >40 yr. The responses to the mid-
19th century outbreak indicate that growth rates may
remain high for more than a century. Relative increases
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in growth rates were similar for both species and were
clearly greater for small, subcanopy trees than for large-
diameter canopy dominants. Thus the larger size of the
non-host species following a beetle attack is not an
overwhelming advantage, given the more rapid growth
rates of subcanopy trees. As long as both species are
abundant as trees <10 cm dbh in the subcanopy, spruce
beetle outbreaks will favor the recruitment of both spe-
cies into larger size classes. Because fir typically is more
abundant than spruce as subcanopy trees (Peet 1981,
Veblen 19865), more of the former species can be ex-
pected to grow into larger size classes following an
outbreak. However, given the greater longevity of spruce
(Veblen 1986b), stands will continue to be codomi-
nated despite the recruitment of smaller numbers of
spruce.

The importance of accelerated growth as opposed to
new seedling establishment following a spruce beetle
outbreak is a major contrast to what is usually observed
following fires (Whipple and Dix 1979, Peet 1981, 1988,
Veblen 19864, Aplet et al. 1988). In particular, fires in
the subalpine zone of the Colorado Rocky Mountains
are largely stand-devastating disturbances that allow
few if any trees to survive. Thus stand development
following fire is dominated by new seedling establish-
ment. Spruce and (/or) lodgepole pine typically dom-
inate the initial several decades of post-fire seedling
establishment. Fir is the least abundant species for sev-
eral decades following fire, but because of its superior
ability to establish on forest litter and under low light
levels (Knapp and Smith 1982), it gradually increases
in abundance during the course of stand development.

Whereas stand-devastating fires tend to favor dom-
inance by spruce and (/or) lodgepole pine, severe beetle
outbreaks shift dominance of these forests towards sub-
alpine fir. Fir, however, becomes susceptible to patho-
genic fungi as it reaches main canopy size (Schmid and
Hinds 1974, Alexander 1987). Since many of the can-
opy fir die, subcanopy trees of both fir and spruce grow
into the main canopy. Due to its greater maximum size
and longevity, spruce eventually attains basal area
dominance, and the stand becomes increasingly sus-
ceptible to a major spruce beetle outbreak (Schmid and
Hinds 1974, Veblen 19865, Alexander 1987). Given
the high windspeeds of the southern Rockies and the
susceptibility of spruce and fir to windthrow (Glidden
1981, Alexander 1987), an epidemic-triggering blow-
down of the spruce-dominated stand is likely. Thus,
in old-growth spruce~fir forests periodically affected by
spruce beetle outbreaks, wave-like oscillations in basal
areas are expected (Schmid and Hinds 1974).

Disturbance by spruce beetle outbreaks is wide-
spread in the subalpine forests of the southern Rockies
(Schmid and Frye 1977), and perhaps is as significant
as fire in forest development (Baker and Veblen 1990).
For example, the mid-19th century spruce beetle out-
break apparently was greater in extent than that of the
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1940s, and affected forests from central New Mexico
to northwestern Colorado (Baker and Veblen 1990,
Veblen et al., in press). For many stands there is a high
probability of severe disturbance by windstorm and
spruce beetle during the slow development of an old-
growth spruce—fir stand following wildfire. The effects
of these canopy disturbances should be explicitly con-
sidered in explanations of the current structures of old-
growth spruce—fir forests in the southern Rockies.
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